The Synthesis of 3-(2'-Hydroxybutyl) isobenzofuran-1 (3H)-one

Guo Xin WANG ${ }^{1}$, Guo Hao XIE ${ }^{3}$, Yuan Liu WU ${ }^{2, *}$, Xin Fu PAN ${ }^{1}$
${ }^{1}$ Laboratory of Applied Organic Chemistry, Institute of Organic Chemistry, Lanzhou University, Lanzhou, 730000
${ }^{2}$ Institute of Materia Medica, Chinese Academy of Medical Science, Beijing, 100050
${ }^{3}$ Department of Chemistry, Shangrao Normol College, 334001

Abstract

The synthesis of 3-(2'-hydroxybutyl) isobenzofuran-1 (3H)-one $\mathbf{1}$ from phthalic anhydride via the intermediate 3 -(2'-oxoethyl) isobenzofuran-1 (3H)-one $\mathbf{6}$ was described.

Keywords: Synthesis, 3-(2'-hydroxybutyl) isobenzofuran-1 (3H)-one.
$1(3 \mathrm{H})$-Isobenzofurans (phthalides) were reported to exhibit a wide range of biological activities. For example, 3-n-butylphthalide (NBP) exhibits antiasthmatic ${ }^{1}$, anticonvulsant 2 activities. Peng and Zhou have studied on the metabolism of NBP in rats ${ }^{3}$. They found that 3-(3'-hydroxybuty l)-isobenzofuran-1 (3H)-one, 3-(2'-hydroxybutyl) isobe-nzofuran-1 (3H)-one 1 and 3-hydroxy-3-butylisobenzofuran-1 $(3 \mathrm{H})$-one were the main the metabolites of NBP. The research of their pharmacology is helpful to search for the drugs against cerebral ischemia. Now, we report a route to 3-(2'-hydroxybutyl) isobenzo-furan-1 (3H)-one 1 (Figure 1).

Reagents and conditions: a: 1) $\mathrm{NaBH}_{4} / \mathrm{DMF}, 0^{\circ} \mathrm{C}$; 2) $\left.\mathrm{NBS} /\left(\mathrm{PhCO}_{2}\right)_{2} \mathrm{O}, \mathrm{CCl}_{4} ; 3\right) \mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$; b: $\mathrm{BrCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}, \mathrm{Sn}, \mathrm{THF}, 35{ }^{\circ} \mathrm{C}$; c:m- $\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CO}_{3} \mathrm{H}^{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}$; d: $\mathrm{H}_{5} \mathrm{IO}_{6} / \mathrm{H}_{2} \mathrm{O}, 45{ }^{\circ} \mathrm{C}$; e: 1) $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{Zn} / \mathrm{Et}_{2} \mathrm{O}$, R.T.; 2) $\mathrm{NH}_{4} \mathrm{Cl}$

Many methods of the synthesis of $\mathbf{3}$ have been reported. We synthesized $\mathbf{3}$ according to Ref.4. Reaction of $\mathbf{3}$ with allyl bromide in THF at $35^{\circ} \mathrm{C}$ in the presence of activated Sn afforded the 3-allylisobenzofuran-1 (3H)-one 4^{5} as a pale yellow oil. Compared with Grignard reaction, this reaction did not require anhydrous conditions and under nitrogen protection and the yield was excellent (95%). 4 was epoxidized with m-chloroperoxyb-enzoic acid (mCPBA) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford 3-(2', 3'-epoxypropyl)
isobenzofuran-1 $(3 \mathrm{H})$-one 5 as white powder (melted at $64-66^{\circ} \mathrm{C}$) in 90% yield after silica gel chromatography. 5 consists of two diastereoisomers in a ratio of about 3:2 based on ${ }^{1} \mathrm{HNMR}$. We propose that the intermolecular hydrogen bonding between 4 and $m C P B A$ results in the diastere-ioselectivity of reaction (Figure 2). Molecular models suggest that the hindrance between Ha and Hc is stronger than that between Ha and Hb .

Figure 2.

Reaction of 5 with periodic acid in water at $45^{\circ} \mathrm{C}$ afforded 3-(2'-oxoethyl) isobenzo-furan-1 $(3 \mathrm{H})$-one 6 as a yellow oil in 90% yield after silica gel chromatography ${ }^{7}$.

We attempted to synthesize $\mathbf{1}$ via reaction of $\mathbf{6}$ with $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{MgBr}$ in $\mathrm{Et}_{2} \mathrm{O}$ at- $78^{\circ} \mathrm{C}$, but the products were complicated and the yield of $\mathbf{1}$ was poor. Finally, we used $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{Zn}$ instead of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{MgBr}$. Reaction of $\mathbf{6}$ with $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{Zn}$ in $\mathrm{Et}_{2} \mathrm{O}$ at room temperature proceeded smoothly and afforded the desired 3-(2'-hydroxybutyl) isobenzofuran-1 (3 H)one $\mathbf{1}$ as a yellow oil in 80% yield after silica gel chromatography. $\mathbf{1}$ consists of two diastereoisomers in a ratio of about $1: 1$ based on ${ }^{1}$ HNMR spectrum ${ }^{8}$. TLC was carried out with different solvent systems, but two diastereoisomers could not be separated by silica gel chromatography. The synthesis of the optical isomers of $\mathbf{1}$ was.

References and Notes

Y.P. Feng, D.Hu, L.Y.Zhang, Acta Pharm.Sinica., 1995, 30 (6), 741.
2. S.Y.Yu, S.Q.You, Acta Pharm. Sinica., 1984, 19 (8), 566.
3. S.H.Peng, T.H.Zhou, Acta Pharm. Sinica., 1997, 32 (6), 641.
4. C. Donat, R.H. Prager, B. Weber, Aust. J. Chem., 1989, 42, 787.
5. The spectra of 4: IR (film, $\left.\mathrm{cm}^{-1}\right): 1767(\mathrm{C}=\mathrm{O}), 1645(\mathrm{C}=\mathrm{C}) ;{ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: 2.61-2.65 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 1$ '), 2.71-2.75 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 1^{\prime}$), 5.10-5.18 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 3$ '), 5.50 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.0$, H3), 5.69-5.76 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2$ '), 7.46 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.7, \mathrm{H} 4$), 7.51 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.6, \mathrm{H} 6$), $7.65(1 \mathrm{H}, \mathrm{J}=6.5$, H5), 7.86 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7, \mathrm{H} 7$); m/z (EI): 174 ($\mathrm{M}^{+}, 2$), 133 ($\mathrm{M}^{+}-41,100$).
6. The spectra of 5: IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: $1759(\mathrm{COO}), 1065(\mathrm{COC}) ;{ }^{1} \mathrm{HNMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: $2.06\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 1^{\prime}\right), 2.30\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 1^{\prime}\right), 2.59,2.73\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3^{\prime}\right), 2.80,2.89\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3^{\prime}\right), 3.04$, $3.29(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2$ '), $5.58(\mathrm{t}, \mathrm{J}=6.6, \mathrm{H} 3), 5.68(\mathrm{t}, \mathrm{J}=5.6, \mathrm{H} 3), 7.48(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.6, \mathrm{H} 4), 7.53(1 \mathrm{H}, \mathrm{t}$, J=6.9, H6), 7.71 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 5$), 7.92 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.9, \mathrm{H} 7$); m/z (EI): $191\left(\mathrm{M}^{+}+1,4\right.$), $173\left(\mathrm{M}^{+}-\mathrm{OH}\right.$, 4), $160\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{OH}+1,25\right), 133\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{CHOCH}_{2}, 100\right)$.
7. The spectra of 6: IR (film, $\left.\mathrm{cm}^{-1}\right)$: $1761(\mathrm{COO}), 1726(\mathrm{CHO}) ;{ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: 3.10 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 1^{\prime}$), 5.97 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.3, \mathrm{H} 3$), 7.49 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8, \mathrm{H} 4$), 7.54 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5, \mathrm{H} 6$), $7.69(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.8, \mathrm{H} 5), 7.91(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8, \mathrm{H} 7), 9.87\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 2\right.$ '); m/z (EI): $176\left(\mathrm{M}^{+}, 22\right), 147$ $\left(\mathrm{M}^{+}-\mathrm{CHO}, 55\right), 133\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{CHO}, 100\right)$.
8. The spectra of 1: IR (film, cm^{-1}): $3460(\mathrm{OH}), 1751(\mathrm{COO}) ;{ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: $0.98\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}^{\prime}\right), 1.53-1.73$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 3$ '), 1.95 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 1$ '), 2.15 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H1}$ '), $3.95(0.5 \mathrm{H}$, m, H2'), 4.04 ($0.5 \mathrm{H}, \mathrm{m}, \mathrm{H} 2^{\prime}$), 5.65 ($0.5 \mathrm{H}, \mathrm{dd}, \mathrm{J}=4.4,8.5, \mathrm{H} 3$), 5.78 ($0.5 \mathrm{H}, \mathrm{d}$, J=9.8, H3), $7.45-$ 7.56 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 4, \mathrm{H} 6$), 7.68 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 5$), 7.91 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5, \mathrm{H} 7$); m/z (EI):207 (${ }^{+}+1,2$), 188 $\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 15\right), 177\left(\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{CH}_{2}, 8\right), 159\left(\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{H}_{2} \mathrm{O}, 32\right), 146\left(\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH})-\right.$ $1,25), 133\left(\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2}, 100\right)$.

